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We consider the escape of particles located in the middle well of a symmetric triple well potential driven
sinusoidally by two forces such that the potential wells rock as in stochastic resonance and the height of the
potential barrier oscillates symmetrically about a mean as in resonant activation. It has been shown that
depending on their phase difference the application of these two synchronized signals may lead to a splitting
of time averaged Kramers’ escape rate and a preferential product distribution in a parallel chemical reaction in
the steady state.
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The escape of a particle from a metastable state due to
thermal activation has been a major issue in chemical dy-
namics and condensed matter physics for several decades
�1–5�. As a typical paradigm in this context, consider a
Brownian particle in the middle well of a symmetric triple
well potential which diffuses symmetrically to the left and
the right well. At a finite temperature and in absence of any
bias force the particles are activated only by inherent thermal
fluctuation resulting in equalization of population in the two
side wells. However, if, in addition, the potential is driven by
an external periodic signal, the escape over the potential bar-
rier is modified by the interplay of the thermal fluctuations
and coherent external signal, due to stochastic resonance
�6–9�. On the other hand, when the height of the potential
barrier is made to oscillate symmetrically or fluctuates
around a mean value by the action of an external input signal
the mean escape time over the fluctuating barrier exhibits a
minimum at a particular value of frequency or correlation
time of the external source due to resonant activation
�10–13�. In both of these cases the time averaged escape
rates from the middle well are equal and the stationary popu-
lation of the left and right wells remains the same.

Our aim of this paper is to explore a possible route lead-
ing to a splitting of the time averaged Kramers’ escape rate
from the middle well due to the interference of these two
resonances and to propose a convenient method for control-
ling the pathways of a parallel reaction for which the barrier
heights corresponding to two product states are equal. For
example, take the case of nucleophilic attack by X− �a halide
ion of HX� at the carboxyl group of a ketone, say, R1�R2�C
=O producing D−R1�R2�C�OH�X and L−R1�R2�C�OH�X,
two optical isomers �enantiomers� having the same energy
and stability but differing in their optical properties and
hence biochemical activities. The middle well of the poten-
tial signifies the reactant state and the terminal wells repre-
sent the two product states of the parallel reaction. Specifi-
cally, our objective here is twofold: first, to understand how
the asymmetry in the time averaged dynamics of the triple
well potential driven simultaneously by two sinusoidal forces
results in differential average escape rate to two product
states and unequal distribution of stationary population den-

sities between them. The second objective, is to explore the
role of phase difference of the two interfering forces in de-
termining asymmetric diffusion of the particles from the
middle well and resulting localization in one state. In other
words we look for a strategy for coherent control of path-
ways of a parallel reaction. As an interesting offshoot of the
analysis a selective process of enrichment of one of the two
isoenergetic isomers under appropriate thermal condition is
also explored.

To illustrate the basic idea we begin with an overdamped
Brownian particle in a symmetric triple well potential V�x�
�Fig. 1� kept in a thermal bath at temperature T and subjected
to two sinusoidal signals a1�t�=A1 sin��1t+�1� and a2�t�
=A2 sin��2t+�2�. The governing Langevin equation is given
by

�ẋ = − V��x� + A1 sin��1t + �1�

+ A2x sin��2t + �2� + ��t� , �1�

where V�x�=x2�bx2−c�2; b and c are the parameters of the
potential �Fig. 1�a�� and � is the dissipation constant. �i and
�i �i=1,2� are the frequency and phase of the signals. Ther-
mal fluctuation of the bath is modeled by zero mean
����t��=0� and delta correlation of noise, ���t���t���
=2D��t− t��, D being the strength of the thermal fluctuation
and is given by D=kT /�. Here the additive signal a1�t� rocks
the potential wells sidewise �Fig. 1�b��, whereas the multipli-
cative signal a2�t� sets a symmetric oscillation �Fig. 1�c�� of
the barrier height around �V0 �=4c3 /27b� with an amplitude
±A2xb

2 /2 at ±xm, respectively �since the fluctuation is space
dependent the amplitude of fluctuation of the barrier height
around �V0 is ±A2�xm

2 −xb
2� /2 for terminal wells to the

middle well�, where ±xb and ±xm are the coordinates of two
barrier tops and two terminal potential minima, respectively.
The two configurations of the potential under simultaneous
action of the two signals a1�t� and a2�t� are schematically
illustrated in Fig. 1�d� for ��=�1−�2=0 and synchronized
frequencies �1=�2. As shown, the barrier height for the tran-
sition from the middle to right well fluctuates with an ampli-
tude ±�A2xb

2 /2+A1xb� whereas for the middle to left well the
amplitude of fluctuation of the barrier height is ±�A2xb

2 /2
−A1

0xb�. If the external modulations a1�t� and a2�t� are small
and very slow implying �V0	A2 ,A1 and the Kramers’ es-*Email address: pcdsr@mahendra.iacs.res.in
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cape time �1/rk� for the unperturbed system is much smaller
than the time period of the external input signals �1/rk


2� /�1=2� /�2� one may consider the expressions for the
time dependent transition rates from the middle to left and
right wells as follows:

WM
L �t� = rk exp �− �A1xb sin��1t + �1�

− �A2xb
2/2�sin��2t + �2��/D� , �2�

WM
R �t� = rk exp �+ �A1xb sin��1t + �1�

+ �A2xb
2/2�sin��2t + �2��/D� , �3�

respectively. Here rk=
�0�b

2�� exp�− �V0

D
� is the transition rate

from the middle well for the unperturbed system; �0, �b are
the frequencies corresponding to the potential minimum �x0�
and barrier top �xb�, respectively. Following McNamara and
Wiesenfeld �8� if we expand the exponential term of the time
dependent transition rate and keep the leading terms up to
second order, the time averaged transition rates for �1=�2
and �1=�2=0 are given by

�WM
L �t��t = rk�1 + �1/4D2��A1xb − �A2/2�xb

2�2� , �4�

�WM
R �t��t = rk�1 + �1/4D2��A1xb + �A2/2�xb

2�2� . �5�

It is apparent from the above expressions that as a result of
interplay of two resonances the period averaged transition
rates from the middle to left and right wells significantly
differ from each other at very low temperature and tend to
equalize in the high temperature limit. In Fig. 2 we present
two representative plots for the ratio of transition rate
to the right and left wells as a function of temperature and
compare the result with simulations in the adiabatic
regime 1/rk
2� /�1=2� /�2. We estimate the ratio
Wr �=�WM

R � / �WM
L ��of the transition rate as a function of ex-

ternal driving frequencies �synchronized frequencies, �1
=�2� by standard numerical simulation of the Langevin
equation �1� using Huen’s algorithm. We allow 10 000 test
particles to move from the middle well in either direction
and count the number of particles which arrive in the left
well �nL� and the right well �nR�, to calculate the ratio of the
transition as given by Wr= �WM

R � / �WM
L �=nR /nL. It is apparent

from Fig. 2 that the numerical analysis matches fairly well
with our theoretical result. As a result of fluctuation of the
barrier heights for both left and right wells, the transition
rates �WM

L � and �WM
R � exhibit resonant activation indepen-

dently as expected �when the Kramers’ escape time coincides
with 2� /�2�. Moreover, as the amplitude of fluctuation of
the barrier height corresponding to the right well is larger
�see Fig. 1�d��, the ratio Wr differs significantly from unity
and exhibits a resonance when the latter is plotted as a func-
tion of the frequency under a phase matched condition �1
=�2. In Fig. 3�a� we plot this ratio as a function of frequency
between the synchronized input signals for several values of
temperature to exhibit this asymmetry in resonant activation
due to differential transition rate. In Fig. 3�b� we plot the
ratio of the transition rate as a function of the phase differ-
ence of the two input signals for different values of strength
of the input signal �A2�. It is observed that the transition rates
toward the side wells are equal �Wr=1� for the phase differ-
ence �1−�2=� /2. The ratio of the rates Wr can be inverted
by reversing the phase difference from �1−�2=0 to �1
−�2=�. Therefore by controlling the phase of the input sig-
nals a1�t� and a2�t�, it is possible to manipulate the transition
of particles from the middle well to the product states and
hence the course of the parallel reaction.

The above analysis is based on kinetic considerations. It is
also worthwhile to turn our attention to the time averaged
distribution of the particles in the two wells and the associ-
ated aspects of localization �14�. This is in the spirit of sta-
tionary product distribution of a parallel reaction. In this case
we allow the trajectories to evolve dynamically for a long
time starting from an arbitrary initial position in the well.
Numerical simulation results show that the residential time
distribution �Fig. 4� bears a marked asymmetry correspond-
ing to a stochastic localization of the particles in the right
well for �1−�2=0 and in the left well for �1−�2=�. For
�1−�2=� /2, the distribution of x�t� over time is more or
less even for both the wells. In view of the input signal
synchronization, a qualitative interpretation of this type of
localization may be given as follows: so long as the force
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FIG. 1. �a� A schematic illustration of a symmetric triple-well
potential. �b� The potential is acted upon by the sinusoidal force
a1�t� resulting in rocking of the side wells with respect to middle
well as in stochastic resonance. �c� The potential is acted upon by
the sinusoidal force a2�t� which sets a symmetric oscillation of the
barrier height as in resonant activation. �d� The two configurations
of the potential under simultaneous action of the two signals a1�t�
and a2�t� for ��=�1−�2=0 and synchronized frequencies �1

=�2.
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a2�t� causing symmetric oscillation of the barrier height at-
tains its lower value, the tilting force a1�t� points to the right
well, so that the particle in the middle well move toward the
right well very quickly. On the other hand as the tilting force
points to the left a2�t� sets the barrier height at a larger value
and consequently the particle in the middle well takes a rela-
tively larger time to speed up from the middle to left well for
the simultaneous action of the synchronized signals. The par-
ticles in the middle well therefore have a greater chance to
cross the right-hand barrier. In the right well, the amplitude
of oscillation of the barrier height is much larger and so the
particle coming into the right well escapes from it more
quickly and on returning back to the middle well it has again
two options to cross the barrier as it was initially. Thus the
particle dynamically spends most of the time in between the
middle and the right wells. To proceed further we require a
quantifier which measures the asymmetry in localization in
the two wells. To this end we choose the mean position of the
particle as a measure of asymmetry. For a symmetric distri-
bution mean position �x�=0 and for the localization of the

particles to the left or right well, the value of mean position
is negative or positive, respectively. In Fig. 5�a� we present
the variation of mean position as a function of synchronized
input signal frequencies. With increase of the input signal
frequency the mean position gradually shifts to a maximum
positive value followed by a decrease to zero at high fre-
quency. In Fig. 5�b� we show the mean position as a function
of phase difference between the two input signals. The mean
position is zero for ��=� /2 and it departs from zero as the
phase difference differs from � /2. For a phase matched con-
dition �1=�2 the particles are localized in the right well
while for a phase reversal ��=� localization takes place in
the left well.

Can temperature influence the product distribution of a
parallel reaction at the steady state? This question is inti-
mately related to the manipulation of incoherent condition
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FIG. 2. A comparison between analytical result �based on ana-
lytical expressions �2� and �3�� and numerical simulation plotting
Wr as a function of temperature for the parameter set ��=0, �1

=�2=0.0005, A1=0.1, A2=0.2, b=0.1, and c=1.0 �all the quantities
are dimensionless�.
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FIG. 3. �a� Variation of Wr as function of frequency for different
values of temperature T=0.2 �dashed line�, T=0.25 �solid line�, and
T=0.4 �dotted line�, and for the parameter set ��=0, A1=0.1, A2

=0.2, b=0.1, c=1.0. �b� Wr vs phase difference �� plot for differ-
ent values of A2 and for the same parameter set as �a� but for �1

=�2=0.05 and T=0.2 �all the quantities are dimensionless�.
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FIG. 4. Residential time distribution for several values of phase
difference ���=0 �upper panel�, ��=� /2 �middle panel�, ��=�
�lower panel�� between two input signals, for the parameter set �1

=�2=0.0013, A1=0.1, A2=0.25, T=0.155, b=0.1, and c=1.0 �all
the quantities are dimensionless�.
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FIG. 5. �a� Mean position ��x�� vs frequency plot for several
values of temperature and for the parameter set ��=0, A1=0.1,
A2=0.25, b=0.1, and c=1.0. �b� Mean position ��x�� vs phase dif-
ference ���� plot for different input signal frequencies and for the
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rather than coherence in selecting and controlling the reac-
tion pathways. To have a closer look into this aspect we
examine the variation of mean position �x� with temperature
with the help of a discrete three-state model for the triple
well potential. Three states are denoted by x0, ±xm for the
symmetric unperturbed system corresponding to three
minima. The diffusional motion causes transitions between
them and it is schematically presented as

L �
�WM

L �

kL

M �
kR

�WM
R �

R

kL, kR, �WM
R �, �WM

L � denote the time averaged rate of transi-
tion from left to middle well, right to middle well, middle to
right well, and middle to left well, respectively. The number
of particles in the three states at time t are denoted by nL, nR,
and nL. The governing master equations for ni �i=L ,R ,M�
read as

dnL/dt = − kLnL + �WM
L �nM , �6�

dnR/dt = − kRnR + �WM
R �nM , �7�

dnM/dt = kLnL + kRnR − ��WM
L � + �WM

R ��nM . �8�

At the steady state �nL̇=nṀ =nṘ=0� the probability of finding
the particles at the three wells Pi �i=L ,R ,M� are PL

= �WM
L �kR / P, PR= �WM

R �kL / P, and PM =kLkR / P where P
=kR�WM

L �+kRkL+kL�WM
R �. The expression for the mean posi-

tion is then given by

�x� = 	
−�

+�

xP�x�dx = xmPR + x0PM − xmPL

= 
�27�V0

2c
� �WM

R �kL − �WM
L �kR

kR�WM
L � + kRkL + kL�WM

R �
. �9�

The above expression clearly shows the dependence of mean
position and probability on four time averaged rate constants.
Furthermore, if we assume that kR and kL do not differ sig-
nificantly then �x�, in general, turns out to be positive since
by Eqs. �4� and �5� �WM

R � is greater than �WM
L �. Keeping in

view of the Arrhenius temperature dependence of the indi-
vidual rate constants, the variation of �x� with temperature is
therefore expected to show a bell-shaped curve. The depar-
ture of �x� from zero toward positive direction indicates the
preferential distribution of the product in the right well. The
numerical simulation of the variation of mean position �x� as
a function of temperature for synchronized input signals un-
der phase matched condition as shown in Fig. 6 corroborates
this assertion.

In summary, we have shown that depending on their
phase difference, an application of two synchronized signals
on a particle in a triple well potential may lead to a splitting
of the time averaged Kramers’ escape rate due to an interfer-
ence of stochastic resonance and resonant activation. This
allows us to realize a strategy for achieving a preferential
product distribution in the steady state of a parallel reaction.
The present analysis thus reveals that stochastic energetics
�15� can be utilized to control kinetically the pathways of a
chemical reaction by appropriate manipulation of coherence
and/or inherent thermal condition.
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